# 6-(2,6-Dimethylphenylimino)-1,1,1-tris[(2,6-dimethylphenyl)isocyano]-10-methoxycarbonyl-8-oxo-2,5-bis(2-propyl)-9-oxa-2,5-diaza-1-ferratricyclo[5.2.1.0 ${ }^{4,10}$ dec-2-ene 

By Kees Goubitz and Henk Schenk<br>Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam, The Netherlands

(Received 3 March 1991; accepted 2 August 1991)


#### Abstract

Fe}\left(\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{4}\right)\right], M_{r}=848.9\), monoclinic, $P 2_{1} / a, a=14.47$ (3),$b=19.749$ (2), $c=17.50$ (2) $\AA$, $\beta=110.6(1)^{\circ}, \quad V=4681(12) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.2 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \quad \mu(\mathrm{Cu} K \alpha)=$ $29.5 \mathrm{~cm}^{-1}, F(000)=1800, T=254.6 \mathrm{~K}$, final $R=$ 0.056 for 1811 observed reflections. The crystals were of such a quality that 1146 reflections remained unobserved. They contain molecules in which the Fe atom is six coordinate. There are no unusual bond lengths and angles.


Experimental. A brick-shaped crystal (I) (dimensions $0.15 \times 0.25 \times 0.40 \mathrm{~mm}$ approximately) was used for data collection on an Enraf--Nonius CAD-4 diffractometer with graphite-monochromated $\mathrm{Cu} K \alpha$ radiation and $\theta-2 \theta$ scan.

(I)

A total of 2957 unique reflections was measured within the range $-13 \leq h \leq 0,0 \leq k \leq 16-13 \leq l \leq$ 14. Of these, 1811 were above the significance level of $2.5 \sigma(I)$. The maximum value of $(\sin \theta) / \lambda$ was $0.42 \AA^{-1}$. Two standard reflections $(020,202)$ were measured hourly; no significant decrease was detected during the 35 h collecting time. Unit-cell parameters were refined by a least-squares fitting procedure using 23 reflections with $50<2 \theta<58^{\circ}$. Corrections for Lorentz and polarization effects were applied. The Fe atom was found by direct methods. The other atoms were located using the program AUTOFOUR (Kinneging \& de Graaf, 1984). The

Table 1. Fractional coordinates for the non- H atoms and equivalent isotropic thermal parameters

|  | $U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $Z$ | $U_{\text {eq }}\left(\AA^{2}\right)$ |
| Fe | -0.0446 (1) | 0.1005 (1) | 0.2078 (1) | 0.031 (1) |
| C(1) | -0.0144 (8) | 0.0036 (5) | 0.2546 (6) | 0.023 (8) |
| C(2) | -0.0707 (9) | -0.0474 (5) | 0.1925 (7) | 0.029 (9) |
| C(3) | -0.1082 (8) | -0.0160 (6) | 0.1097 (7) | 0.029 (8) |
| C(4) | 0.0906 (9) | -0.0869 (6) | 0.2465 (7) | 0.036 (9) |
| C(5) | 0.0926 (8) | -0.0108 (5) | 0.2654 (7) | 0.025 (8) |
| C(6) | 0.1199 (9) | 0.0339 (6) | 0.2052 (7) | 0.039 (9) |
| C(7) | -0.0294 (9) | -0.0023 (6) | 0.3325 (7) | 0.041 (9) |
| C(8) | -0.143 (1) | -0.0255 (8) | 0.4022 (8) | 0.07 (1) |
| C(9) | -0.030 (1) | -0.1745 (6) | 0.1891 (7) | 0.05 (1) |
| C(10) | -0.115 (1) | -0.1874 (7) | 0.1095 (9) | 0.07 (1) |
| C(11) | -0.058 (1) | -0.1986 (7) | 0.2603 (9) | 0.08 (1) |
| C(12) | -0.1479 (9) | 0.0760 (6) | 0.0183 (7) | 0.039 (9) |
| C(13) | -0.2331 (9) | 0.1225 (6) | 0.0106 (7) | 0.044 (9) |
| C(14) | -0.064 (1) | 0.1076 (7) | -0.0041 (8) | 0.06 (1) |
| C(15) | 0.2582 (9) | -0.1108 (6) | 0.3278 (7) | 0.034 (8) |
| C(16) | 0.3361 (9) | -0.1062 (7) | 0.2996 (7) | 0.045 (9) |
| C(17) | 0.428 (1) | -0.0901 (7) | 0.3509 (8) | 0.06 (1) |
| C(18) | 0.445 (1) | -0.0779 (7) | 0.4321 (9) | 0.07 (1) |
| C(19) | 0.369 (1) | -0.0823 (8) | 0.4629 (8) | 0.09 (1) |
| C(20) | 0.272 (1) | -0.1016 (7) | 0.4090 (7) | 0.05 (1) |
| C(21) | 0.318 (1) | -0.1196 (7) | 0.2114 (8) | 0.05 (1) |
| C(22) | 0.193 (1) | -0.1121 (8) | 0.4468 (8) | 0.08 (1) |
| C(23) | 0.0252 (9) | 0.1359 (6) | 0.3077 (7) | 0.033 (9) |
| C(24) | 0.1376 (9) | 0.1739 (6) | 0.4528 (7) | 0.032 (9) |
| C(25) | 0.235 (1) | 0.1533 (6) | 0.4746 (8) | 0.05 (1) |
| C(26) | 0.297 (1) | 0.1732 (7) | 0.5528 (8) | 0.06 (1) |
| C(27) | 0.261 (1) | 0.2124 (7) | 0.6005 (9) | 0.08 (1) |
| C(28) | 0.163 (1) | 0.2312 (7) | 0.5765 (8) | 0.07 (1) |
| C(29) | 0.0987 (9) | 0.2105 (6) | 0.4996 (7) | 0.038 (9) |
| C(30) | 0.272 (1) | 0.1123 (8) | 0.421 (1) | 0.09 (1) |
| C(31) | -0.009 (1) | 0.2293 (8) | 0.4743 (9) | 0.07 (1) |
| C(32) | -0.0583 (8) | 0.1871 (6) | 0.1636 (7) | 0.031 (8) |
| C(33) | -0.0851 (9) | 0.3105 (6) | 0.1078 (7) | 0.035 (9) |
| C(34) | -0.030 (1) | 0.3352 (6) | 0.0655 (9) | 0.05 (1) |
| C(35) | -0.052 (1) | 0.3997 (7) | 0.0318 (8) | 0.06 (1) |
| C(36) | -0.128 (1) | 0.4347 (7) | 0.0442 (8) | 0.07 (1) |
| C(37) | -0.179 (1) | 0.4095 (7) | 0.0901 (8) | 0.06 (1) |
| C(38) | -0.1595 (9) | 0.3444 (6) | 0.1216 (7) | 0.04 (1) |
| C(39) | 0.051 (1) | 0.2958 (8) | 0.054 (1) | 0.09 (1) |
| C(40) | -0.216 (1) | 0.3168 (7) | 0.1711 (9) | 0.06 (1) |
| C(4) | -0.1605 (8) | 0.1043 (6) | 0.2238 (7) | 0.028 (8) |
| C(42) | -0.3214 (9) | 0.0995 (6) | 0.2548 (7) | 0.041 (9) |
| C(43) | -0.380 (1) | 0.0435 (6) | 0.2291 (8) | 0.05 (1) |
| C(44) | -0.465 (1) | 0.0369 (7) | 0.2481 (9) | 0.06 (1) |
| C(45) | -0.488 (1) | 0.0875 (8) | 0.2935 (9) | 0.08 (1) |
| C(46) | -0.427 (1) | 0.1427 (8) | 0.3197 (8) | 0.07 (1) |
| C(47) | -0.345 (1) | 0.1496 (7) | 0.2984 (8) | 0.05 (1) |
| C(48) | -0.356 (1) | $-0.0108(8)$ | 0.180 (1) | 0.09 (1) |
| C(49) | -0.282 (1) | 0.2119 (7) | 0.3254 (9) | 0.07 (1) |
| $N(1)$ | -0.0026 (6) | -0.1031 (5) | 0.1968 (5) | 0.030 (6) |
| N(2) | -0.1067 (7) | 0.0475 (4) | 0.1028 (5) | 0.018 (6) |
| N(3) | 0.1630 (7) | -0.1299 (5) | 0.2738 (6) | 0.037 (7) |
| N(4) | 0.0713 (7) | 0.1558 (5) | 0.3730 (6) | 0.035 (7) |
| N(5) | -0.0662 (7) | 0.2439 (5) | 0.1409 (5) | 0.033 (7) |
| N(6) | -0.2352 (7) | 0.1040 (5) | 0.2350 (5) | 0.043 (7) |
| $\mathrm{O}(1)$ | 0.0785 (5) | 0.0904 (4) | 0.1868 (4) | 0.033 (5) |
| $\mathrm{O}(2)$ | 0.1829 (7) | 0.0122 (4) | 0.1763 (6) | 0.067 (7) |
| $\mathrm{O}(3)$ | -0.1210 (6) | -0.0235 (4) | 0.3263 (4) | 0.044 (6) |
| $\mathrm{O}(4)$ | 0.0319 (6) | 0.0121 (4) | 0.3990 (5) | 0.049 (6) |

[^0]Table 2. Selected bond lengths ( $\AA$ ) and bond angles ( ${ }^{\circ}$ )

| $\mathrm{Fe}-\mathrm{C}(1)$ | $2.07(1)$ | $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.49(2)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{Fe}-\mathrm{C}(23)$ | $1.82(1)$ | $\mathrm{C}(2)-\mathrm{N}(1)$ | $1.46(1)$ |
| $\mathrm{Fe}-\mathrm{C}(32)$ | $1.86(1)$ | $\mathrm{C}(3)-\mathrm{N}(2)$ | $1.26(1)$ |
| $\mathrm{Fe}-\mathrm{C}(1)$ | $1.80(1)$ | $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.54(2)$ |
| $\mathrm{Fe}-\mathrm{N}(2)$ | $2.025(8)$ | $\mathrm{C}(4)-\mathrm{N}(1)$ | $1.36(1)$ |
| $\mathrm{Fe}-\mathrm{O}(1)$ | $1.95(1)$ | $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.53(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.49(1)$ | $\mathrm{C}(6)-\mathrm{O}(1)$ | $1.25(1)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.52(2)$ |  |  |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(23)$ | $90.4(5)$ | $\mathrm{Fe}-\mathrm{C}(1)-\mathrm{C}(2)$ | $110.6(7)$ |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(32)$ | $173.5(6)$ | $\mathrm{Fe}-\mathrm{C}(1)-\mathrm{C}(5)$ | $106.6(8)$ |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(41)$ | $93.2(5)$ | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$ | $103(1)$ |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{N}(2)$ | $81.1(4)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(1)$ | $110.1(9)$ |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{O}(1)$ | $84.4(4)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$ | $106.7(8)$ |
| $\mathrm{C}(23)-\mathrm{Fe}-\mathrm{C}(32)$ | $89.2(5)$ | $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(1)$ | $112(1)$ |
| $\mathrm{C}(23)-\mathrm{Fe}-\mathrm{C}(41)$ | $93.7(6)$ | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(2)$ | $120(1)$ |
| $\mathrm{C}(23)-\mathrm{Fe}-\mathrm{N}(2)$ | $170.3(4)$ | $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$ | $107.9(9)$ |
| $\mathrm{C}(23)-\mathrm{Fe}-\mathrm{O}(1)$ | $89.3(5)$ | $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $102.5(9)$ |
| $\mathrm{C}(32-\mathrm{Fe}-\mathrm{C}(4)$ | $93.3(6)$ | $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ | $107.9(9)$ |
| $\mathrm{C}(32)-\mathrm{Fe}-\mathrm{N}(2)$ | $98.7(4)$ | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $114(1)$ |
| $\mathrm{C}(32)-\mathrm{Fe}-\mathrm{O}(1)$ | $89.1(5)$ | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(1)$ | $118(1)$ |
| $\mathrm{C}(41)-\mathrm{Fe}-\mathrm{N}(2)$ | $91.4(5)$ | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$ | $110.7(9)$ |
| $\mathrm{C}(41-\mathrm{Fe}-\mathrm{O}(1)$ | $176.2(4)$ | $\mathrm{Fe}-\mathrm{N}(2)-\mathrm{C}(3)$ | $116.4(7)$ |
| $\mathrm{N}(2)-\mathrm{Fe}-\mathrm{O}(1)$ | $85.3(4)$ | $\mathrm{Fe}-\mathrm{O}(1)-\mathrm{C}(6)$ | $115.3(9)$ |
|  |  |  |  |



Fig. 1. The molecular structure of the title compound showing the atom numbering.



Fig. 2. Stereoscopic view of the tricyclic moiety.
positions of the H atoms were calculated and kept fixed during refinement with $U=0.09 \AA^{2}$. Blockdiagonal least-squares refinement on $F$ of 541 parameters, anisotropic for the non- H atoms, converged to $R=0.056, w R=0.062,(\Delta / \sigma)_{\max }=0.49$ with $w=$ $\left(22.12+F_{\text {obs }}+0.007 F_{\text {obs }}^{2}\right)^{-1}$. An empirical absorption correction was applied, with corrections in the range 0.84-1.35 (DIFABS; Walker \& Stuart, 1983). A final difference Fourier map revealed a residual electron density between -0.3 and $0.4 \mathrm{e} \AA^{-3}$. Scattering factors were taken from Cromer \& Mann (1968); International Tables for X-ray Crystallography (1974, Vol. IV, p. 55). Anomalous dispersion for Fe was corrected for. All calculations were performed with XTAL2.6 (Hall \& Stewart, 1989) unless stated otherwise. Final positional parameters for the non-H atoms are listed in Table 1,* selected bond lengths and bond angles are in Table 2. A PLUTO (Motherwell \& Clegg, 1978) drawing of the molecule, showing the numbering scheme, is given in Fig. 1 and a stereoscopic view of the tricyclic moiety is in Fig. 2. The conformation of the three five-membered rings according to the classification of Altona, Geise \& Romers (1968) is as follows. Ring $1[\mathrm{C}(1), \mathrm{C}(2)$, $\mathrm{C}(3), \mathrm{N}(2)$ and $\mathrm{Fe}, \quad \Delta=0.23$, half-chair. Ring 2 $[\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(4), \mathrm{C}(5)$ and $\mathrm{N}(1)], \Delta=6.8$, pseudo half-chair. Ring $3[\mathrm{C}(1), \mathrm{C}(5), \mathrm{C}(6), \mathrm{O}(1)$ and Fe$], \Delta$ $=19.9$, distorted envelope.

Related literature. The title compound is one of the first examples of a tricyclic structure with the metal incorporated into one of the rings. The synthesis and chemical properties will be discussed in a separate paper (de Lange, Frühauf, van Wijnkoop \& Vrieze, 1991). This compound is another proof of the synthesis of polycyclic structures starting from $\mathrm{Fe}(\alpha-$ diimine) and acetylenes (Frühauf, Siels \& Stam, 1989; de Lange, Frühauf, van Wijnkoop, Vrieze, Wang, Heijdenrijk \& Stam, 1990).

[^1]
## References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 42, 13.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Frühauf, H.-W., Siels, F. \& Stam, C. H. (1989). Organometallics, 8, 2338-2343.
Hall, S. R. \& Stewart, J. M. (1989). Editor. XTaL2.6 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
Kinneging, A. J. \& de Graaf, R. A. G. (1984). J. Appl. Cryst. 17, 364-366.

Lange, P. P. M. de, Frühauf, H.-W., van Wiunkoop, M. \& Vrieze, K. (1991). To be published.
lange, P. P. M. de, Frǘhauf, H.-W., van Wifnooop, M., Vrieze, K., Wang, Y., Heiddenrijk, D. \& Stam, C. H. (1990). Organometallics, 9, 1691-1694.

Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158166.

Acta Cryst. (1992). C48, 361-362

# Structure of $\left[\boldsymbol{\eta}-\mathbf{C}_{5}\left(\mathbf{C H}_{3}\right)_{5}\right] \mathrm{RuCl}_{\mathbf{2}}\left(\mathbf{N C}_{5} \mathbf{H}_{5}\right)$ 

By Frank Bottomley and Peter A. Sutton<br>Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada, E3B 5A3

(Received 15 April 1991; accepted 20 August 1991)


#### Abstract

Dichloro}(\eta\)-pentamethylcyclopentadienyl)(pyridine)ruthenium, $\left[\mathrm{RuCl}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right], M_{r}$ $=386.31$, monoclinic, $P 2_{1} / m, a=7.2112$ (5), $b=$ 13.430 (1), $c=8.4573$ (7) $\AA, \quad \beta=106.540$ ( 6$)^{\circ}, \quad V=$ 785.2 (1) $\AA^{3}, Z=2, D_{x}=1.63 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo K $\alpha$ ) $=$ $0.71073 \AA, \mu=13.1 \mathrm{~cm}^{-1}, F(000)=390, T=295 \mathrm{~K}$, $R=0.027, w R=0.051$ for 1283 unique observed reflections $\left[I_{o} \geq 2.5 \sigma(I)\right]$. The Ru has a piano-stool coordination of $\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}$, two Cl atoms and the N of pyridine $[\mathrm{Ru}-\mathrm{Cl} 2.386(1), \mathrm{Ru}-\mathrm{N} 2.150$ (5) $\AA$ and $\mathrm{Ru}-\mathrm{C}_{5}$-ring centroid 1.819 (4) $\AA$ ].


Experimental. Orange plates of $\left[\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right] \mathrm{Ru}$ $\mathrm{Cl}_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)$ were obtained by treating a solution of $\left[\left\{\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right\} \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ (Tilley, Grubbs \& Bercaw, 1984; Oshima, Suzuki \& Moro-oka, 1984) in tetrahydrofuran with pyridine (Bottomley, McKenzie-Boone \& Sutton, 1991). A crystal of dimensions $0.35 \times 0.15 \times 0.25 \mathrm{~mm}$ was coated with Apiezon grease, sealed in a capillary and mounted on an Enraf-Nonius CAD-4 diffractometer. Lattice constants were obtained by accurate centring of 25 reflections in the range $30<2 \theta<40^{\circ}$. Intensities were measured using the $\omega / 2 \theta$-scan mode to a $2 \theta_{\text {max }}$ of $50^{\circ}\left(h_{\max } 8, k_{\text {max }} 15, l_{\max } 10\right)$. Three standard reflections were monitored every hour; there was no significant change in their intensity. The intensities of 2590 reflections were measured and averaged to yield 1450 unique reflections ( $R_{\text {int }}=0.014$ ) of which 1283 were judged as significant by the criterion that $I>$ $2.5 \sigma(I)$. No absorption correction was made. The structure was solved and refined using NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). The structure could only be solved in $P 2_{1}$, but refinement showed clearly that $P 2_{1} / m$ was the correct space group. The function minimized was $\sum w(\Delta F)^{2}$, where $w=1\left[\sigma(F)^{2}+0.001 F^{2}\right]$ and $\sigma$ was obtained from counting statistics. All non- H atoms were refined

0108-2701/92/020361-02\$03.00
with anisotropic thermal parameters. All of the H atoms were observed in a difference Fourier synthesis. Their positions were idealized to $s p^{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ or $s p^{3}\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right]$ geometry, and they were allowed to ride on the C atom to which they were attached ( $\mathrm{C}-\mathrm{H}=0.96 \AA$ ) with fixed isotropic thermal parameters. Full-matrix least-squares refinement of 94 parameters for 1283 reflections gave a final $R=$ $0.027, w R=0.051$ and a goodness of fit of 1.38. The largest $\Delta / \sigma$ was 0.002 . A final difference synthesis had a maximum peak of 0.32 e $\AA^{-3}$, located between $\mathrm{C}(102)$ and $\mathrm{C}(103)$ of the $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ ring, and a minimum hole of -0.65 e $\AA^{-3} 1.0 \AA$ from Ru. Scattering factors for neutral atoms, corrected for the real and imaginary parts of the anomalous dispersion, were obtained from International Tables for X-ray Crystallography (1974, Vol. IV). Positional parameters are listed in Table 1,* selected bond lengths and angles in Table 2 and an ORTEP (Johnson, 1976) diagram of the structure is shown in Fig. 1.

Related literature. The structure of $\left[\left\{\eta-\mathrm{C}_{5}-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{3}\right)_{s}\right\} \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ is similar to its Rh analogue (Koelle \& Kossakowski, 1989; Churchill, Julis \& Rotella, 1977). No other $\left[\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right.$ ] derivatives of $\mathrm{Ru}^{\text {III }}$ have been structurally characterized. The structures of a number of $\mathrm{Ru}^{1 \mathrm{II}}$ derivatives, notably $\left[\left\{\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right\} \mathrm{Ru}\left(\mu_{3}-\mathrm{Cl}\right)\right]_{4}$ (Fagan, Mahoney, Calabrese \& Williams, 1990) and $\quad \eta-\mathrm{C}_{5}(\mathrm{C}-$ $\left.\left.\mathrm{H}_{3}\right)_{5}\right] \mathrm{RuCl}_{2}\left(\eta^{2}: \eta^{4}-\mu_{2}-\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Ru}\left[\eta-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right] \quad$ (Campion, Heyn \& Tilley, 1990), have been determined.

[^2](C) 1992 International Union of Crystallography


[^0]:    © 1992 International Union of Crystallography

[^1]:    * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and a complete list of bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54581 ( 33 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: MU0257]

[^2]:    * Lists of H-atom positions, anisotropic thermal parameters, structure-factor amplitudes, further bond distances and angles and a labelled diagram of the molecule have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54510 ( 13 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

